THE IN SITU PROTECTION OF ALDEHYDES VIA α -AMINO ALKOXIDES

Daniel L. Comins* and Jack D. Brown

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322.

Summary: Aromatic and aliphatic aldehydes can be protected in situ via the formation of α -amino alkoxides and their 0-trimethylsilyl derivatives.

The addition of an organolithium reagent to a N,N-disubstituted amide forms an intermediate α -amino alkoxide which is stable to further reaction with organometallics (e.g. <u>n</u>-BuLi, THF, RT, 16 h).¹ These adducts undergo elimination on hydrolysis to provide ketones, and thus can be considered as carbonyl protecting groups. This concept has been ingeniously utilized by Gronowitz,² and subsequently by others,³ to prepare <u>ortho</u>-substituted aromatic ketones via one-pot syntheses.

The potential of α -amino alkoxides as carbonyl protecting groups, combined with our own interest in the chemistry of α -(N-methyl-N-(2-pyridyl)) amino alkoxides,⁴ prompted us to investigate other routes to these intermediates. We have found that α -amino alkoxides are readily formed by the addition of an aldehyde to the lithium amide of certain secondary amines. This allows for the <u>in situ</u> protection of aromatic and aliphatic aldehydes in high yield as indicated in the table.

The initial studies were performed using lithium morpholide⁵ and monobromobenzaldehydes. The adduct (<u>1</u>) was formed in THF at -78° (15 min) and subsequently treated with <u>n</u>-BuLi to provide an intermediate dianion <u>2</u> via lithium-halogen exchange. Addition of methyl iodide followed by aqueous workup provided high yields of the tolualdehydes 3 (entries 1-3).

Lithium morpholide is limited as a reagent for aldehyde protection due to its strong basic and nucleophilic properties. This limitation was circumvented by the use of lithium 2-(N-methyl-N-(2-pyridyl))-amide (LMPA) as the lithium amide component. LMPA is a relatively weak base, as compared to lithium morpholide, and does not metalate or attack aliphatic esters (entries 4-5). However, LMPA does react with aromatic and aliphatic aldehydes very readily even at low temperatures (THF, -78°) to form the addition adducts <u>4</u>.

Adducts $\underline{4}$ are susceptible to nucleophilic attack with certain organometallic reagents (RLi and LAH),⁴ however, they are relatively stable to Grignard reagents at 0° and can be utilized as an aldehyde protecting group for Grignard reactions (entry 4). The intermediate $\underline{4}$ can be converted to protected derivative $\underline{5}$, which is stable to organolithium reagents and LAH, by the addition of chlorotrimethylsilane (1.1-1.5 equiv Me₃SiCl, RT, 1 h; see entries 5-11). This methodology allows for the one-pot in situ protection⁶ of an aldehyde for organometallic reactions. The protecting groups $\underline{4}$ and $\underline{5}$ are removed quantitatively on aqueous workup (dilute HCl, <5 min).

This method of protection is limited to aldehyde carbonyls, as ketones (e.g. acetophenone, benzylacetone, and 4-tert-butylcyclohexanone) are converted to their enclate anions with LMPA.

Entry	Reactant(s)	Reaction Conditions ^C	Product(s) ^a	% Yield ^b 85
l	CH0 CH0 Br	 Lithium morpholide THF, -78° <u>n</u>-BuLi, -78° 		
2	CHO CO Br	3. CH ₃ I "	CH0 CD CH3	90
3	CHO C Br	u	CHO C CHO CH3	86

Table. The In Situ Protection of Aldehydes

Table. (continued)

Entry	Reactant(s)	Reaction Conditions ^C	Product(s) ^a	% Yield ^b
4	CHO + Ph OEt	1. 1.1 LMPA, -23° 2. 3 equiv CH ₃ MgC1, 0°	он <u>А</u> + Ph ~~	87; 90
	С1 <u>В</u> <u>А</u>		<u>C</u>	
5	<u>A</u> + <u>B</u>	1. 1.1 LMPA, -23° 2. 1.1 Me ₃ SiC1, RT, 1 3. xs CH ₃ Li	<u>A</u> + <u>C</u> h	89; 82
6	сно Соосн ₃	1. 1.1 LMPA, -23° 2. 1.1 Me ₃ SiC1 3. xs CH ₃ MgC1	сно	76
7	CHO COOCH ₃	1. 1.1 LMPA, -23° 2. 1.1 Me ₃ SiC1 3. xs LAH	сно Сно сн ₂ он	89
8	Вr{О} СНО <u>D</u>	1. 1.5 LMPA, -78° 2. 1.5 Me ₃ SiCl, RT, 1 3. 1.0 n-BuLi 4. CH ₃ I	h CH3-(0)	СНО 86
9	Ph CHO	1. 1.5 LMAP, -78° 2. 1.5 Me ₃ SiC1 3. CH ₃ Li, -78°, 1 h 4. EtOAc; H ₃ O ⁺	<u>E</u>	87

Table. (continued)

Entry	Reactant(s)		Reaction Conditions ^C	Product(s) ^a	% Yield ^b
10		1.	1.5 LMAP, -78°		
	<u>E</u>	2.	1.5 Me ₂ SiCl	E	92
1	-	3.	LAH, -78°, 1 h		
		4.	EtOAc; H ₃ 0 ⁺		
11 Ph -	- сно \	1.	1.5 LMAP, -78°		
	Ph - CN	2.	1.5 Me ₃ SiCl	\underline{F} + Ph	80; 71 ^d
	I	3.	1.1 LDĂ	ĊN	
	<u>F</u>	4.	Benzyl chloride		

^aAll known products had identical spectral and physical properties with authentic samples. The product from entry 6 is a new compound and its structure is consistant with all spectral and elemental analyses.

^bReactions were performed on a 3 mmole scale and all yields are for isolated, pure, material obtained from preparative layer chromatography (silica gel, acetone-hexane).

^CThe workup consisted of pouring the reaction mixture into cold 10% aqueous HCl followed by extraction with ether.

^dThe yield was determined by ¹H nmr analysis of the mixture isolated from preparative layer chromatography.

<u>Acknowledgments</u>. Financial support of this work by the Research Corporation and the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

References and notes

- 1. L Barsky, H. W. Gschwrend, J. McKenna, and H. R. Rodriguez, J. Org. Chem., 41, 3651 (1976).
- U. Michael and S. Gronowitz, <u>Acta Chem. Scand.</u>, 1353 (1968); S. Gronowitz, <u>Ark. Kemi</u>, <u>32</u>, 283 (1970).
- V. P. Litvinov, Ya. L. Gol'dfarb, V. V. Zelentosov, L. F. Bogdanova, and N. N. Petukhova, <u>Khim. Geterotsikl. Soedin.</u>, 486 (1975). V. P. Litvinov, T. V. Shchedningskaya, P. A. <u>Konstantinov, and Ya. L. Gol;dfarb, <u>Khim. Geterotsikl.</u> <u>Soedin.</u>, 492 (1975); Also see ref 1.
 </u>
- 4. D. L. Comins and A. I. Meyers, <u>Synthesis</u>, 403 (1978); A. I. Meyers and D. L. Comins, <u>Tetrahedron Lett.</u>, 5179 (1978); D. L. Comins and W. Dernell, <u>Tetrahedron Lett</u>., 1085 (1981).
- 5. Lithium N-methylanilide and lithium piperidide were also used; however, the solubility of these lithium amides, or their aldehyde adducts, was too low for convenient use in THF at low temperatures.
- Ketones have been protected toward hydride reduction via the <u>in situ</u> formation of enolate anions. D. H. R. Barton, R. H. Hesse, C. Wilshire, and M. M. Pechet, J. <u>Chem</u>. <u>Soc.</u>, <u>Perkin Trans. 1</u>, 1075 (1977); G. R. Kieczykowski, and R. H. Schlessinger, <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc.</u>, <u>100</u>, 1938 (1978); D. J. Goldsmith, A. J. Lewis, and W. C. Still, <u>Tetrahedron Lett.</u>, 4807 (1973); G. A. Kraus and K. Frazier, <u>J</u>. <u>Org. Chem</u>., <u>45</u>, 4262 (1980).

(Received in USA 13 April 1981)